Overview of YEAR 13 SPRING STATISTICS

Week	Statements	Teaching activities	Notes
1	2.03b Be able to use appropriate diagrams to assist in the calculation of probabilities. <i>Includes tree diagrams, sample space diagrams, Venn diagrams.</i>		CHAPTER 16 CONDITIONAL PROBABILITY SECTION 1 SET NOTATION AND VENN DIAGRAMS Page 356 EXERCISE 16A Page 360
	2.03c Understand and be able to use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables. <i>Includes understanding and being able</i> <i>to use the notations:</i> $A \cap B, A \cup B, A B$. <i>Includes understanding and being able</i> <i>to use the formulae:</i> $P(A \cap B) = P(A) \times P(B A),$ $P(A \cup B) = P(A) + P(B) - P(A \cap B).$		
	2.03d Understand the concept of conditional probability, and calculate it from first principles in given contexts.		

Includes understanding and being able to use the conditional probability formula $P(A B) = \frac{P(A \cap B)}{P(B)}.$ [Use of this formula to find $P(A B)$ from P(B A) is excluded.]		
--	--	--

Week	Statements	Teaching activities	Notes
2			LESSON 1 CONTINUED
			EXERCISE 16A Page 360

Week	Statements	Teaching activities	Notes
3	2.03c Understand and be able to use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables. Includes understanding and being able to use the notations: $A \cap B, A \cup B, A B$. Includes understanding and being able to use the formulae:		SECTION 2 TWO WAY TABLES Page 363 EXERCISE 16B Page 364

$P(A \cap B) = P(A) \times P(B A),$ $P(A \cup B) = P(A) + P(B) - P(A \cap B).$	

Week	Statements	Teaching activities	Notes
4	2.03b Be able to use appropriate diagrams to assist in the calculation of probabilities. <i>Includes tree diagrams, sample space diagrams, Venn diagrams.</i>		SECTION 3 TREE DIAGRAMS Page 366 EXERCISE 16C Page 369

Week	Statements	Teaching activities	Notes
5	2.03e Be able to model with probability, including critiquing assumptions made and the likely effect of more realistic assumptions.		SECTION 4 MODELLING WITH PROBABILITY Page 371 MIXED PRACTICE 16 Page 375-376

Week	Statements	Teaching activities	Notes
6	2.04e Understand and be able to use the normal distribution as a model. Includes understanding and being able to use the notation $X \sim N(\mu, \sigma^2)$.		CHAPTER 17 THE NORMAL DISTRIBUTION Page 377 SECTION 1 INTRODUCTION TO NORMAL PROBABILITIES

Week	Statements	Teaching activities	Notes
7	2.04e Understand and be able to use the normal distribution as a model. Includes understanding and being able to use the notation $X \sim N(\mu, \sigma^2)$.		SECTION 1 INTRODUCTION TO NORMAL PROBABILITIES CONTINUED EXERCISE 17A Page 381

Week	Statements	Teaching activities	Notes
8	2.04f Be able to find probabilities using the normal distribution, using appropriate calculator functions. <i>This includes finding x, for a given</i> <i>normal variable, when</i> $P(X < x)$ <i>is</i> <i>known.</i> <i>Learners should understand the</i> <i>standard normal distribution, Z, and the</i> <i>transformation</i> $Z = \frac{X-\mu}{\sigma}$.		USING Z SCORES AND THE STANDARD NORMAL DISTRIBUTION Page 381

Week	Statements	Teaching activities	Notes
9	2.04f Be able to find probabilities using the normal distribution, using appropriate calculator functions. <i>This includes finding x, for a given</i> <i>normal variable, when</i> $P(X < x)$ <i>is</i> <i>known.</i> <i>Learners should understand the</i> <i>standard normal distribution, Z, and the</i> <i>transformation</i> $Z = \frac{X-\mu}{\sigma}$.		USING Z SCORES AND THE STANDARD NORMAL DISTRIBUTION CONTINUED Page 381 EXERCISE 17B Page 384

Week	Statements	Teaching activities	Notes
10	2.04f Be able to find probabilities using the normal distribution, using appropriate calculator functions. <i>This includes finding x, for a given</i> <i>normal variable, when</i> $P(X < x)$ <i>is</i> <i>known.</i> <i>Learners should understand the</i> <i>standard normal distribution, Z, and the</i> <i>transformation</i> $Z = \frac{X-\mu}{\sigma}$.		SECTION 2 INVERSE NORMAL DISTRIBUTION Page 385 EXERCISE 17C Page 386

Week	Statements	Teaching activities	Notes
11			SECTION 3 FINDING UNKNOWN PARAMETERS Page 387 EXERCISE 17D Page 389

Week	Statements	Teaching activities	Notes
12			SECTION 3 CONTINUED
			EXERCISE 17D Page 389

Week	Statements	Teaching activities	Notes
13	 2.04h Be able to select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or normal model may not be appropriate. Includes understanding that a given binomial distribution with large n can be approximated by a normal distribution. 		SECTION 4 MODELLING WITH NORMAL DISTRIBUTION Page 390 EXERCISE 17E Page 393

[Questions explicitly requiring calculations using the normal approximation to the binomial distribution are excluded.]	

Week	Statements	Teaching activities	Notes
14			MIXED PRACTICE 17 Page 396-397

Week	Statements	Teaching activities	Notes
15	2.05d Recognise that a sample mean, \overline{X} , can be regarded as a random variable. Learners should know and be able to use the result that if $X \sim N(\mu, \sigma^2)$ then $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$. [The proof is excluded.]		CHAPTER 18 FURTHER HYPOTHESIS TESTING Page 398 SECTION 1 DISTRIBUTION OF THE SAMPLE MEAN Page 399 EXERCISE 18A Page 400

Week	Statements	Teaching activities	Notes
16	2.05d Recognise that a sample mean, \overline{X} , can be regarded as a random variable. Learners should know and be able to use the result that if $X \sim N(\mu, \sigma^2)$ then $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$. [The proof is excluded.]		SECTION 1 DISTRIBUTION OF THE SAMPLE MEAN Page 399 EXERCISE 18A CONTINUED Page 400

Week	Statements	Teaching activities	Notes
17	2.05a Understand and be able to use the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, test statistic, 1-tail test, 2-tail test, critical value, critical region, acceptance region, <i>p</i> -value. <i>Hypotheses should be stated in terms</i> of parameter values (where relevant) and the meanings of symbols should be stated. For example, " H_0 : $p = 0.7$, H_1 : $p \neq 0.7$, where <i>p</i> is the population proportion in favour of the resolution".		SECTION 2 HYPOTHESIS TESTS FOR A MEAN Page 401 EXERCISE 18B Page 405

Conclusions should be stated in such a way as to reflect the fact that they are not certain. For example, "There is evidence at the 5% level to reject H_0 . It is likely that the mean mass is less than 500 g." "There is no evidence at the 2% level to reject H_0 . There is no reason to suppose that the mean journey time has changed."	
Some examples of incorrect conclusion are as follows: " <i>H</i> ₀ is rejected. Waiting times have increased." "Accept <i>H</i> ₀ . Plants in this area have the same height as plants in other areas."	

Week	Statements	Teaching activities	Notes
18	2.05a Understand and be able to use the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, test statistic, 1-tail test, 2-tail test, critical value, critical region, acceptance region, <i>p</i> -value. <i>Hypotheses should be stated in terms</i>		SECTION 2 HYPOTHESIS TESTS FOR A MEAN Page 401 EXERCISE 18B CONTINUED Page 405

of parameter values (where relevant) and the meanings of symbols should be stated. For example, " $H_0: p = 0.7$, $H_1: p \neq 0.7$, where p is the population proportion in favour of the resolution". Conclusions should be stated in such a way as to reflect the fact that they are not certain. For example, "There is evidence at the 5% level to reject H_0 . It is likely that the mean mass is less than 500 g." "There is no evidence at the 2% level to reject H_0 . There is no reason to suppose that the mean journey time has changed."	
Some examples of incorrect conclusion are as follows: "H ₀ is rejected. Waiting times have increased." "Accept H ₀ . Plants in this area have the same height as plants in other areas."	

Week	Statements	Teaching activities	Notes
19	2.05f Understand Pearson's product- moment correlation coefficient as a measure of how close data points lie to a straight line.		SECTION 3 HYPOTHESIS TESTS FOR CORRELATION COEFFICIENTS Page 408 EXERCISE 18C Page 410

2.05g Use and be able to interpret Pearson's product-moment correlation coefficient in hypothesis tests, using either a given critical value or a <i>p</i> -value and a table of critical values.	
When using Pearson's coefficient in an hypothesis test, the data may be assumed to come from a bivariate normal distribution.	
A table of critical values of Pearson's coefficient will be provided.	
[Calculation of correlation coefficients is excluded.]	

Week	Statements	Teaching activities	Notes
20	2.05f Understand Pearson's product- moment correlation coefficient as a measure of how close data points lie to a straight line.		SECTION 3 HYPOTHESIS TESTS FOR CORRELATION COEFFICIENTS Page 408 EXERCISE 18C CONTINUED Page 410
	2.05g Use and be able to interpret Pearson's product-moment correlation		

e a	coefficient in hypothesis tests, using either a given critical value or a <i>p</i> -value and a table of critical values.	
V h a n	When using Pearson's coefficient in an hypothesis test, the data may be assumed to come from a bivariate normal distribution.	
A C	A table of critical values of Pearson's coefficient will be provided.	
[C is	Calculation of correlation coefficients is excluded.]	

Week	Statements	Teaching activities	Notes
21			MIXED PRACTICE 18 Page 413-414

Week	Statements	Teaching activities	Notes
22			CROSS TOPIC REVIEW Page 420-423

Week	Statements	Teaching activities	Notes
23			

Week	Statements	Teaching activities	Notes
24			

Week	Statements	Teaching activities	Notes
25			

Week	Statements	Teaching activities	Notes
26			

Week	Statements	Teaching activities	Notes
27			