Overview of YEAR 12 AUTUMN 2

Week	Statements	Teaching activities	Notes
1	1.06h Be able to use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and x. Learners should be able to reduce equations of these forms to a linear form and hence estimate values of a and n, or k and b by drawing graphs using given experimental data and using appropriate calculator functions.		CHAPTER 8 SECTION 4 FITTING MODELS TO DATA Page 141-145

Week	Statements	Teaching activities	Notes
2	1.06h Be able to use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and x. Learners should be able to reduce equations of these forms to a linear form and hence estimate values of a and n, or k and b by drawing graphs		CHAPTER 8 SECTION 4 FITTING MODELS TO DATA Page 141-145 MIXED PRACTICE 8 Page 146-148

using given experimental data and using appropriate calculator functions.	
1.06i Understand and be able to use exponential growth and decay and use the exponential function in modelling. <i>Examples may include the use of e in</i> <i>continuous compound interest,</i> <i>radioactive decay, drug concentration</i> <i>decay and exponential growth as a</i> <i>model for population growth. Includes</i> <i>consideration of limitations and</i> <i>refinements of exponential models.</i>	

Week	Statements	Teaching activities	Notes
3	1.04a Understand and be able to use the binomial expansion of $(a + bx)^n$ for positive integer <i>n</i> and the notations <i>n</i> ! and ${}^{n}C_{r}$, ${}_{n}C_{r}$ or $\binom{n}{r}$, with ${}^{n}C_{0} = {}^{n}C_{n} =$ 1.		CHAPTER 9 SECTION 1 THE BINOMIAL THEOREM Page 149-153
	e.g. Find the coefficient of the x^3 term in the expansion of $(2 - 3x)^7$. Learners should be able to calculate binomial coefficients. They should also		

know the relationship of the binomial coefficients to Pascal's triangle and their use in a binomial expansion.	
They should also know that $0! = 1$.	

Week	Statements	Teaching activities	Notes
4	1.02c Be able to solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation. The equations may contain brackets and/or fractions. e.g. $y = 4 - 3x$ and $y = x^2 + 2x - 2$ $2xy + y^2 = 4$ and $2x + 3y = 9$		CHAPTER 9 SECTION 2 CALCULATING THE BINOMIAL COEFFICIENTS Page 154- 156
	1.04b Understand and know the link to binomial probabilities.		

Week	Statements	Teaching activities	Notes
5	1.04a Understand and be able to use the binomial expansion of $(a + bx)^n$ for positive integer n and the notations $n!$ and nC_r , ${}_nC_r$ or $\binom{n}{r}$, with ${}^nC_0 = {}^nC_n =$ 1. e.g. Find the coefficient of the x^3 term in the expansion of $(2 - 3x)^7$. Learners should be able to calculate binomial coefficients. They should also know the relationship of the binomial coefficients to Pascal's triangle and their use in a binomial expansion. They should also know that $0! = 1$.		CHAPTER 9 SECTION 3 APPLICATIONS OF THE BINOMIAL THEOREM Page 157-159 MIXED PRACTICE 9 Page 160
	1.04b Understand and know the link to binomial probabilities.		

Week	Statements	Teaching activities	Notes
6	1.05a Understand and be able to use the definitions of sine, cosine and tangent for all arguments.		CHAPTER 10

	SECTION 1 DEFINITIONS AND GRAPHS OF THE SINE AND COSINE FUNCTIONS Page 170-175
	SECTION 2 DEFINITION AND GRAPH OF THE TANGENT FUNCTION Page 176-177

Week	Statements	Teaching activities	Notes
7	1.05f Understand and be able to use the sine, cosine and tangent functions, their graphs, symmetries and periodicities. Includes knowing and being able to use exact values of $sin \theta$ and $cos \theta$ for $\theta = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}$ and multiples thereof and exact values of $tan \theta$ for $\theta = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}$ and multiples thereof.		CHAPTER 10 SECTION 3 EXACT VALUES OF TRIGONOMETRIC GRAPHS Page 177-179

Week	Statements	Teaching activities	Notes
8	1.05j Understand and be able to use $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta \equiv 1$.		CHAPTER 10

In particular, these identities may be used in solving trigonometric equations and simple trigonometric proofs.	SECTION 4 TRIGONOMETRIC IDENTITIES Page 179-183
---	--

Week	Statements	Teaching activities	Notes
9	1.050 Be able to solve simple trigonometric equations in a given interval, including quadratic equations in sin θ , cos θ and tan θ and equations involving multiples of the unknown angle. e.g. $sin \theta = 0.5$ for $0 \le \theta < 360^{\circ}$ $6sin^2 \theta + cos \theta - 4 = 0$ for $0 \le \theta < 360^{\circ}$ $tan 3\theta = -1$ for $-180^{\circ} < \theta < 180^{\circ}$ Extend their knowledge of trigonometric equations to include radians and the trigonometric identities in Stage 2.		CHAPTER 10 SECTION 5 INTRODUCING TRIGONOMETRIC EQUATIONS Page 184-188

Week	Statements	Teaching activities	Notes
10	1.05f Understand and be able to use the sine, cosine and tangent functions, their graphs, symmetries and periodicities. Includes knowing and being able to use exact values of $sin \theta$ and $cos \theta$ for $\theta = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}$ and multiples thereof and exact values of $tan \theta$ for $\theta = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}$ and multiples thereof.		CHAPTER 10 SECTION 6 TRANSFORMATIONS OF TRIGONOMETRIC GRAPHS Page 189-192

Week	Statements	Teaching activities	Notes
11	1.050 Be able to solve simple trigonometric equations in a given interval, including quadratic equations in sin θ , cos θ and tan θ and equations involving multiples of the unknown angle. e.g. $sin \theta = 0.5$ for $0 \le \theta < 360^{\circ}$ $6sin^{2} \theta + cos \theta - 4 = 0$ for $0 \le \theta < 360^{\circ}$ $tan 3\theta = -1$ for $-180^{\circ} < \theta < 180^{\circ}$ Extend their knowledge of		CHAPTER 10 SECTION 7 MORE COMPLEX TRIGONOMETRIC EQUATIONS Page 193-196

in Stage 2.

Week	Statements	Teaching activities	Notes
12	1.05j Understand and be able to use $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta \equiv 1$. In particular, these identities may be used in solving trigonometric equations and simple trigonometric proofs.		CHAPTER 10 SECTION 7 USING IDENTITIES TO SOLVE EQUATIONS Page 196-199 MIXED PRACTICE 10 Page 201-202

Week	Statements	Teaching activities	Notes
13	1.05b Understand and be able to use the sine and cosine rules.		CHAPTER 11
			SECTION 1 SINE RULE Page 204-208
	Questions may include the use of bearings and require the use of the ambiguous case of the sine rule.		SECTION 2 COSINE RULE Page 209- 213

Week	Statements	Teaching activities	Notes
14	1.05c Understand and be able to use the area of a triangle in the form		CHAPTER 11
	$\frac{1}{2}ab\sin C.$		SECTION 3 AREA OF A TRIANGLE Page 214-217
			MIXED PRACTICE 11 Page 218-219

Week	Statements	Teaching activities	Notes
15	1.10a Be able to use vectors in two dimensions. <i>i.e.</i> Learners should be able to use vectors expressed as $x\mathbf{i} + y\mathbf{j}$ or as a column vector $\begin{pmatrix} x \\ y \end{pmatrix}$ to use vector notation appropriately either as \overrightarrow{AB} or \mathbf{a} . Learners should know the difference between a scalar and a vector, and should distinguish between them carefully when writing by hand.		CHAPTER 12 SECTION 1 DESCRIBING VECTORS Page 221-226

Week	Statements	Teaching activities	Notes
16	1.10c Be able to calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form. Learners should know that the modulus of a vector is its magnitude and the direction of a vector is given by the angle the vector makes with a horizontal line parallel to the positive x-axis. The direction of a vector will be taken to be in the interval [0°, 360°). Includes use of the notation a for the magnitude of a and $ \vec{OA} $ for the magnitude of \vec{OA} . Learners should be able to calculate the magnitude of vector $\begin{pmatrix} x \\ y \end{pmatrix}$ as $\sqrt{x^2 + y^2}$ and its direction by $\tan^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$.		CHAPTER 12 SECTION 2 OPERATIONS ON VECTORS Page 226-231
	1.10d Be able to add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.		

<i>i.e. Either a scaling of a single vector or a displacement from one position to another by adding one or more vectors, often in the form of a triangle of vectors.</i>		
---	--	--

Week	Statements	Teaching activities	Notes
17	1.10e Understand and be able to use position vectors. Learners should understand the meaning of displacement vector, component vector, resultant vector, parallel vector, equal vector and unit vector.		CHAPTER 12 SECTION 3 POSITION AND DISPLACEMENT VECTORS Page 232- 237
	1.10f Be able to calculate the distance between two points represented by position vectors. <i>i.e. The distance between the points</i> $a\mathbf{i} + b\mathbf{j}$ and $c\mathbf{i} + d\mathbf{j}$ is $\sqrt{(c-a)^2 + (d-b)^2}$.		

Week	Statements	Teaching activities	Notes
18	1.10g Be able to use vectors to solve problems in pure mathematics and in context, including forces.		CHAPTER 12 SECTION 4 USING VECTORS TO SOLVE GEOMETRICAL PROBLEMS Page 238-244 MIXED PRACTICE 12 Page 245-246

Week	Statements	Teaching activities	Notes
19	1.07a Understand and be able to use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y = f(x)$ at a general point (x, y) .		CHAPTER 13 SECTION 1 SKETCHING DERIVATIVES Page 247-251
	1.070 Be able to identify where functions are increasing or decreasing. <i>i.e.</i> To be able to use the sign of $\frac{dy}{dx}$ to determine whether the function is increasing or decreasing.		

Week	Statements	Teaching activities	Notes
20	1.07g Be able to show differentiation from first principles for small positive integer powers of <i>x</i> . In particular, learners should be able to use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ including the notation. [Integer powers greater than 4 are excluded.]		CHAPTER 13 SECTION 2 DIFFERENTIATION FROM FIRST PRINCIPLES Page 251-253
	1.07b Understand and be able to use the gradient of the tangent at a point where $x = a$ as: 1. the limit of the gradient of a chord as x tends to a 2. a rate of change of y with respect to x. Learners should be able to use the notation $\frac{dy}{dx}$ to denote the rate of y change of x. Learners should be able to use the notations f' (x) and $\frac{dy}{dx}$ and recognise their equivalence.		

Week	Statements	Teaching activities	Notes
21	1.07i Be able to differentiate x^n for rational values of n and related constant multiples, sums and differences.		CHAPTER 13 SECTION 3 RULES OF DIFFERENTIATION Page 254-257 SECTION 4 Page 258-260

Week	Statements	Teaching activities	Notes
22	1.07b Understand and be able to use the gradient of the tangent at a point where $x = a$ as: 1. the limit of the gradient of a chord as x tends to a 2. a rate of change of y with respect to x. Learners should be able to use the notation $\frac{dy}{dx}$ to denote the rate of y change of x. Learners should be able to use the notations f' (x) and $\frac{dy}{dx}$ and recognise their equivalence.		CHAPTER 13 SECTION 5 INTERPRETING DERIVATIVES AND SECOND DERIVATIVES Page 261-266 MIXED PRACTICE 13 Page 268-269

1.07d Understand and be able to find second derivatives. Learners should be able to use the notations $f''(x)$ and $\frac{d^2y}{dx^2}$ and recognise their equivalence.	
 1.07e Understand and be able to use the second derivative as the rate of change of gradient. e.g. For distinguishing between maximum and minimum points. For the application to points of inflection, see 1.07f. 	

Week	Statements	Teaching activities	Notes
23	1.07m Be able to apply differentiation to find the gradient at a point on a curve and the equations of tangents and normals to a curve.		CHAPTER 14 SECTION 1 TANGENTS AND NORMALS Page 270-274

Week	Statements	Teaching activities	Notes
24	 1.07e Understand and be able to use the second derivative as the rate of change of gradient. e.g. For distinguishing between maximum and minimum points. For the application to points of inflection, see 1.07f. 		CHAPTER 14 SECTION 2 STATIONARY POINTS Page 275-279
	1.07d Understand and be able to find second derivatives. Learners should be able to use the notations $f''(x)$ and $\frac{d^2y}{dx^2}$ and recognise their equivalence.		

Week	Statements	Teaching activities	Notes
25	 1.07e Understand and be able to use the second derivative as the rate of change of gradient. e.g. For distinguishing between maximum and minimum points. 		CHAPTER 14 SECTION 3 OPTIMISATION Page 279- 286 MIXED PRACTICE 14 Page 288-289

For the application to points of inflection, see 1.07f.		
---	--	--

Week	Statements	Teaching activities	Notes
26	1.08a Know and be able to use the fundamental theorem of calculus. <i>i.e.</i> Learners should know that integration may be defined as the reverse of differentiation and be able to apply the result that $\int f(x) dx = F(x) + c \Leftrightarrow f(x) = \frac{d}{dx}(F(x))$ for sufficiently well-behaved functions. Includes understanding and being able to use the terms indefinite and definite when applied to integrals.		CHAPTER 15 SECTION 1 RULES FOR INTEGRATION Page 291-294

Week	Statements	Teaching activities	Notes
27	1.08b Be able to integrate x^n where $n \neq -1$ and related sums, differences and constant multiples.		CHAPTER 15 SECTION 2 SIMPLIFYING THE INTEGRATION RULES Page 294-296
	Learners should also be able to solve		

Week	Statements	Teaching activities	Notes
28	1.08b Be able to integrate x^n where $n \neq -1$ and related sums, differences and constant multiples. Learners should also be able to solve problems involving the evaluation of a constant of integration e.g. to find the equation of the curve through $(-1, 2)$ for which $\frac{dy}{dx} = 2x + 1$.		CHAPTER 15 SECTION 3 FINDING THE EQUATION OF A CURVE Page 297-300

Week	Statements	Teaching activities	Notes
29	1.08d Be able to evaluate definite integrals.		CHAPTER 15
			SECTION 4 DEFINITE INTEGRATION Page 300-302
			SECTION 5 GEOMETRICAL SIGNIFICANCE Page 302-310

	MIXED PRACTICE 15 Page 311-314
1.08e Be able to use a definite integral to find the area between a curve and the <i>x</i> -axis.	
This area is defined to be that enclosed by a curve, the x-axis and two ordinates. Areas may be included which are partly below and partly above the x-axis, or entirely below the x-axis.	

Week	Statements	Teaching activities	Notes
30			

Week	Statements	Teaching activities	Notes
31			